skip to main content


Search for: All records

Creators/Authors contains: "Tian, Zhiting"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 22, 2024
  2. To enable the on-demand control of heat flow for sustainable energy solutions, we have been longing for functional thermal components at the nanoscale, in analogue to electronic diodes and transistors. Understanding and discovering fundamental mechanisms that drive thermal rectification are critical to advancing this field. Different mechanisms have been proposed for thermal rectification effects in the classical regime. Using anharmonic atomistic Green's function, we discovered a thermal rectification phenomenon in the quantum regime for nanometer-thick three-dimensional solid interfaces. We found that the anharmonic phonon scatterings across the interface act on the temperature-dependent phonon populations on both sides of the interface, generating the necessary nonlinearity to achieve thermal rectification. This intrinsic thermal interface rectification is a universal phenomenon that can be observed and engineered for nanoscale interfaces.

     
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Abstract This review introduces relevant nanoscale thermal transport processes that impact thermal abatement in power electronics applications. Specifically, we highlight the importance of nanoscale thermal transport mechanisms at each layer in material hierarchies that make up modern electronic devices. This includes those mechanisms that impact thermal transport through: (1) substrates, (2) interfaces and 2-D materials and (3) heat spreading materials. For each material layer, we provide examples of recent works that (1) demonstrate improvements in thermal performance and/or (2) improve our understanding of the relevance of nanoscale thermal transport across material junctions. We end our discussion by highlighting several additional applications that have benefited from a consideration of nanoscale thermal transport phenomena, including RF electronics and neuromorphic computing. 
    more » « less
  5. null (Ed.)